- codifferential operator
- мат.кодифференциальный оператор
English-Russian scientific dictionary. 2008.
English-Russian scientific dictionary. 2008.
Laplace-Beltrami operator — In differential geometry, the Laplace operator can be generalized to operate on functions defined on surfaces, or more generally on Riemannian and pseudo Riemannian manifolds. This more general operator goes by the name Laplace Beltrami operator … Wikipedia
Laplace operator — This article is about the mathematical operator. For the Laplace probability distribution, see Laplace distribution. For graph theoretical notion, see Laplacian matrix. Del Squared redirects here. For other uses, see Del Squared (disambiguation) … Wikipedia
Hodge dual — In mathematics, the Hodge star operator or Hodge dual is a significant linear map introduced in general by W. V. D. Hodge. It is defined on the exterior algebra of a finite dimensional oriented inner product space. Contents 1 Dimensions and… … Wikipedia
Laplacian operators in differential geometry — In differential geometry there are a number of second order, linear, elliptic differential operators bearing the name Laplacian. This article provides an overview of some of them. Connection Laplacian The connection Laplacian is a differential… … Wikipedia
De Rham cohomology — For Grothendieck s algebraic de Rham cohomology see Crystalline cohomology. In mathematics, de Rham cohomology (after Georges de Rham) is a tool belonging both to algebraic topology and to differential topology, capable of expressing basic… … Wikipedia
List of formulas in Riemannian geometry — This is a list of formulas encountered in Riemannian geometry.Christoffel symbols, covariant derivativeIn a smooth coordinate chart, the Christoffel symbols are given by::Gamma {ij}^m=frac12 g^{km} left( frac{partial}{partial x^i} g {kj}… … Wikipedia
Differential form — In the mathematical fields of differential geometry and tensor calculus, differential forms are an approach to multivariable calculus that is independent of coordinates. Differential forms provide a better[further explanation needed] definition… … Wikipedia
Čech cohomology — In mathematics, specifically algebraic topology, Čech cohomology is a cohomology theory based on the intersection properties of open covers of a topological space. It is named for the mathematician Eduard Čech. Contents 1 Motivation 2… … Wikipedia